

AS and A level Further Mathematics Core Pure Mathematics

Practice Paper Matrix algebra (part 1)

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 13 questions in this question paper. The total mark for this paper is 100 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1.

$$
\mathbf{M}=\left(\begin{array}{cc}
x & x-2 \\
3 x-6 & 4 x-11
\end{array}\right)
$$

Given that the matrix \mathbf{M} is singular, find the possible values of x.
2.

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & -1 \\
4 & 3
\end{array}\right), \quad \mathbf{P}=\left(\begin{array}{cc}
3 & 6 \\
11 & -8
\end{array}\right)
$$

(a) Find \mathbf{A}^{-1}

The transformation represented by the matrix \mathbf{B} followed by the transformation represented by the matrix \mathbf{A} is equivalent to the transformation represented by the matrix \mathbf{P}.
(b) Find \mathbf{B}, giving your answer in its simplest form.
3. (i) $\mathbf{A}=\left(\begin{array}{cc}2 k+1 & k \\ -3 & -5\end{array}\right)$, where k is a constant

Given that $\mathbf{B}=\mathbf{A}+3 \mathbf{I}$
where \mathbf{I} is the 2×2 identity matrix, find
(a) \mathbf{B} in terms of k,
(b) the value of k for which \mathbf{B} is singular.
(2)
(ii) Given that

$$
\mathbf{C}=\left(\begin{array}{r}
2 \\
-3 \\
4
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{lll}
2 & -1 & 5
\end{array}\right)
$$

and

$$
\mathbf{E}=\mathbf{C D}
$$

find \mathbf{E}.
4. (a) Given that

$$
\mathbf{A}=\left(\begin{array}{lll}
3 & 1 & 3 \\
4 & 5 & 5
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{rr}
1 & 1 \\
1 & 2 \\
0 & -1
\end{array}\right)
$$

find $\mathbf{A B}$.
(b) Given that

$$
\mathbf{C}=\left(\begin{array}{ll}
3 & 2 \\
8 & 6
\end{array}\right) \text { and } \mathbf{D}=\left(\begin{array}{rr}
5 & 2 k \\
4 & k
\end{array}\right), \text { where } k \text { is a constant }
$$

and

$$
\mathbf{E}=\mathbf{C}+\mathbf{D},
$$

find the value of k for which \mathbf{E} has no inverse.
5.

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 0 \\
5 & 3
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{rr}
-3 & -1 \\
5 & 2
\end{array}\right)
$$

(a) Find AB.

Given that

$$
\mathbf{C}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

(b) describe fully the geometrical transformation represented by \mathbf{C},
(c) write down \mathbf{C}^{100}.
6. (a) Given that

$$
\mathbf{A}=\left(\begin{array}{rr}
1 & \sqrt{ } 2 \\
\sqrt{ } 2 & -1
\end{array}\right)
$$

(i) find \mathbf{A}^{2},
(ii) describe fully the geometrical transformation represented by \mathbf{A}^{2}.
(b) Given that

$$
\mathbf{B}=\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right),
$$

describe fully the geometrical transformation represented by B.
(c) Given that

$$
\mathbf{C}=\left(\begin{array}{rr}
k+1 & 12 \\
k & 9
\end{array}\right),
$$

where k is a constant, find the value of k for which the matrix \mathbf{C} is singular.
(3)
(Total 9 marks)
7. (i) Given that

$$
\mathbf{A}=\left(\begin{array}{rr}
1 & 2 \\
3 & -1 \\
4 & 5
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{rrr}
2 & -1 & 4 \\
1 & 3 & 1
\end{array}\right)
$$

(a) find $\mathbf{A B}$.
(b) Explain why $\mathbf{A B} \neq \mathbf{B A}$.
(ii) Given that

$$
\mathbf{C}=\left(\begin{array}{cc}
2 k & -2 \\
3 & k
\end{array}\right) \text {, where } k \text { is a real number }
$$

find \mathbf{C}^{-1}, giving your answer in terms of k.
8. The transformation U, represented by the 2×2 matrix \mathbf{P}, is a rotation through 90° anticlockwise about the origin.
(a) Write down the matrix \mathbf{P}.

The transformation V, represented by the 2×2 matrix \mathbf{Q}, is a reflection in the line $y=-x$.
(b) Write down the matrix \mathbf{Q}.
(1)

Given that U followed by V is transformation T, which is represented by the matrix \mathbf{R},
(c) express \mathbf{R} in terms of \mathbf{P} and \mathbf{Q},
(d) find the matrix \mathbf{R},
(e) give a full geometrical description of T as a single transformation.
9. A right angled triangle T has vertices $A(1,1), B(2,1)$ and $C(2,4)$. When T is transformed by the matrix $\mathbf{P}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, the image is T^{\prime}.
(a) Find the coordinates of the vertices of T^{\prime}.
(2)
(b) Describe fully the transformation represented by \mathbf{P}.
(2)

The matrices $\mathbf{Q}=\left(\begin{array}{ll}4 & -2 \\ 3 & -1\end{array}\right)$ and $\mathbf{R}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ represent two transformations. When T is transformed by the matrix $\mathbf{Q R}$, the image is $T^{\prime \prime}$.
(c) Find $\mathbf{Q R}$.
(2)
(d) Find the determinant of $\mathbf{Q R}$.
(2)
(e) Using your answer to part (d), find the area of $T^{\prime \prime}$.
10. (i)

$$
\mathbf{A}=\left(\begin{array}{ll}
p & 2 \\
3 & p
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{cc}
-5 & 4 \\
6 & -5
\end{array}\right)
$$

where p is a constant.
(a) Find, in terms of p, the matrix $\mathbf{A B}$

Given that

$$
\mathbf{A B}+2 \mathbf{A}=k \mathbf{I}
$$

where k is a constant and \mathbf{I} is the 2×2 identity matrix,
(b) find the value of p and the value of k.
(ii)

$$
\mathbf{M}=\left(\begin{array}{cc}
a & -9 \\
1 & 2
\end{array}\right) \text {, where } a \text { is a real constant }
$$

Triangle T has an area of 15 square units.
Triangle T is transformed to the triangle T^{\prime} by the transformation represented by the matrix \mathbf{M}.

Given that the area of triangle T^{\prime} is 270 square units, find the possible values of a.
11.

$$
\mathbf{A}=\left(\begin{array}{rr}
-4 & a \\
b & -2
\end{array}\right) \text {, where } a \text { and } b \text { are constants. }
$$

Given that the matrix A maps the point with coordinates $(4,6)$ onto the point with coordinates $(2,-8)$,
(a) find the value of a and the value of b.

A quadrilateral R has area 30 square units.
It is transformed into another quadrilateral S by the matrix \mathbf{A}.
Using your values of a and b,
(b) find the area of quadrilateral S.
12.

$$
\mathbf{P}=\left(\begin{array}{cc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) .
$$

(a) Describe fully the single geometrical transformation U represented by the matrix \mathbf{P}.

The transformation U maps the point A, with coordinates (p, q), onto the point B, with coordinates $(6 \sqrt{ } 2,3 \sqrt{ } 2)$.
(b) Find the value of p and the value of q.

The transformation V, represented by the 2×2 matrix \mathbf{Q}, is a reflection in the line with equation $y=x$.
(c) Write down the matrix \mathbf{Q}.

The transformation U followed by the transformation V is the transformation T. The transformation T is represented by the matrix \mathbf{R}.
(d) Find the matrix \mathbf{R}.
(e) Deduce that the transformation T is self-inverse.
(Total 10 marks)
13.

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right)
$$

Given that $\mathbf{M}=(\mathbf{A}+\mathbf{B})(2 \mathbf{A}-\mathbf{B})$,
(a) calculate the matrix \mathbf{M},
(b) find the matrix \mathbf{C} such that $\mathbf{M C}=\mathbf{A}$.

